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Abstract—Thiophosphites, but not phosphites, add onto alkenes under very mild conditions when treated with triethylborane and
oxygen, and deliver the expected adducts in high isolated yields. This method, featuring a high atom economy, complements those
described in literature and can be used to initiate tandem cascade processes. © 2001 Published by Elsevier Science Ltd.

The formation of carbon�phosphorus bonds has been an
area of intense investigation for decades due to the
implication of organophosphorus compounds as ligands
of metals, as close analogues of phosphate esters, and
because of their involvement in reactions such as the
Wittig (and related) olefination. Thus, these C�P bonds
have traditionally been created by nucleophilic substitu-
tion of halides (including Arbuzov transformations) or
by addition of phosphorus-centered radical onto alkenes
(chain process).

In particular, phosphonyl and phosphonothioyl radicals
(3) and (4) have been used to produce phosphonates (8)
and phosphonothioates (9), respectively, which can be
considered as non-hydrolyzable analogues of monoesters
of the phosphate group. Radical (3) or (4) have been
typically generated (i) from the corresponding phosphites
(1) or thiophosphites (2) in the presence of peroxides
(Scheme 1, route A), or (ii) from selenophosphates (10)
or selenophosphorothioates (11) and trialkyltin hydride
(12) in the presence of a radical initiator (route B).1,2

Scheme 1. (R1=alkyl; R2=alkyl, aryl, …).
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Comparison between the two procedures allows one to
rapidly identify two disadvantages of the latter. Thus,
the use of tris(n-butyl)tin hydride as hydrogen quench
produces tin-based by-products that render purification
tedious.3 Furthermore, the use of the selenoether moi-
ety strongly speaks again of the notion of atom econ-
omy, since this functional group becomes replaced with
a hydrogen atom in the final product.4 Therefore, route
A represents the most direct way to carry out these
reactions, the major drawback of the procedure being
the use of peroxides as initiators of the chain process.
Our own work on the addition of phosphonyl and
phosphonothioyl radicals (generated from thiophos-
phite and tert-butyl peroxypivalate) to 1,1-difluoroalke-
nes clearly demonstrated that phosphites and
thiophosphites participate efficiently in the chain pro-
cess through hydrogen transfer to the carbon-centered
radical in the radical-adduct.1a This observation led us
to speculate that the chain process could be initiated by
any alkyl radical. A common procedure to generate

alkyl radicals relies on the interaction between trialkyl-
boranes and oxygen.5 We thus envisioned this system as
being potentially able to generate the above-mentioned
chain process.

Combining equimolar amounts of diethylphosphite (1a)
and n-octene (5a) with triethylborane (14) (Et3B, 1.5
equiv.) under aerobic conditions induced no change,
even under forcing conditions. However, replacing
diethyl phosphite with diethyl thiophosphite (2a)
resulted in a clean and complete conversion to diethyl
octylphosphonothioate (9a) after only 10 min at
room temperature, as shown by 31P NMR spectro-
metry. Decreasing the amount of borane to 1 equiva-
lent did not induce any change in the course of the
reaction, but 0.5 equivalents of 14 required 3 h for
the reaction to attain completion. The use of 0.25
equivalents of triethylborane resulted in only 50% con-
version, the unconsumed phosphite and octene being
recovered.

Scheme 2.

Table 1. Reaction between alkenes (5) and diethyl thiophosphite (2a) in the presence of Et3B and oxygen

aAll yields refer to isolated products; all compounds gave analytical data in accordance with the depicted structures.
bThe formation of a complex mixture is observed; thiophosphite is recovered.
cThe formation of a complex mixture is observed; thiophosphite is consumed.
dReaction between thiophosphite 2 and the alkene in the presence of tert-butyl peroxypivalate, see Ref. 11.
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The difference in reactivity between diethylphosphite
(1a) and diethylthiophosphite (2a) was confirmed by
conducting the reaction in the presence of both
reagents. Thus, mixing octene (5a) (1.0 equiv.), phos-
phite 1a (1.0 equiv.) and thiophosphite 2a (1.0 equiv.)
and submitting the resultant mixture to the above
procedure resulted in the exclusive and quantitative
formation of product 9a and the recovery of uncon-
sumed 1a (1.0 equiv.) (Scheme 2).

Dichloromethane, diethyl ether, tetrahydrofuran, tolu-
ene or fluorobenzene were all found to be suitable
solvents. The reaction can also be carried out at lower
temperatures: complete conversion was observed at
−40°C after only 1 h of stirring. This first study
allowed us to define the optimal conditions as
described in the procedure.6

We next investigated the scope and limitation of this
procedure by submitting a range of substrates to the
reaction (Table 1). Clean additions occurred on mono-,
di- and trisubstituted alkenes, resulting in the isola-
tion of the expected pure phosphonothioates (9) in
yields higher than 90% (entries 1–3 and 8). Electron-
enriched alkenes such as n-butylvinyl ether (5d) also
gave the adduct in good yield (entry 4), but ethyl
acrylate (5e) produced only polymers, the thiophos-
phite being recovered unchanged. An analogous result
was observed with tert-butyl peroxypivalate. The pres-
ence of ketals in the substrate has a deleterious effect
on the course of the reaction: although the thiophos-
phite is completely consumed, a complex mixture is
produced, presumably the result of the Lewis acidity
of triethylborane.7 Interestingly, when tert-butyl per-
oxypivalate was used, the expected adducts (9f) and
(9g) were obtained in 65 and 81% yields, respectively
(entries 6 and 7). In the case of (9g), hydrogen
quenching of the radical adduct by the thiophosphite
occurred exclusively from the �-face of the furanoside,
due to the shielding effect of the 2,3-acetonide moi-
ety.2b

Entries 8–10 depict products resulting from tandem
cascade processes: ring opening of the cyclobutane
moiety in the radical adduct of (1R)-(+)-�-pinene (5h)
furnished menthene thiophosphonate (9h) as a single
stereoisomer.8 Bisallyl sulfonamide (5i) produced
pyrrolidine (9i) in good yield after a 5-exo-trig cycliza-
tion.9 The reaction occurs even in the presence of
chelating groups (entry 10).

In summary, phosphonothioyl radicals can be gener-
ated by aerobic decomposition of triethylborane and
trapped by alkylsubstituted and electron rich olefins to
produce phosphonothioates in good to excellent yields.
Even though the intimate mechanism of the reaction
requires further studies, this method constitutes a valu-
able addition to the growing field of tin-free radical
reactions.10 The reaction is easily carried out and can
initiate useful tandem processes.
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